PostgreSQL: Documentation: 9.4: User

PostgreSQL: Documentation: 9.4: User

时间:2015-07-10 14:45来源:网络整理 作者:KKWL 点击:
35.10. User-defined Aggregates Aggregate functions in PostgreSQL are defined in terms of state values and state transition functions. That is, an aggregate operates using a state value that is updated as each successive input row is process

35.10. User-defined Aggregates

Aggregate functions in PostgreSQL are defined in terms of state values and state transition functions. That is, an aggregate operates using a state value that is updated as each successive input row is processed. To define a new aggregate function, one selects a data type for the state value, an initial value for the state, and a state transition function. The state transition function takes the previous state value and the aggregate's input value(s) for the current row, and returns a new state value. A final function can also be specified, in case the desired result of the aggregate is different from the data that needs to be kept in the running state value. The final function takes the last state value and returns whatever is wanted as the aggregate result. In principle, the transition and final functions are just ordinary functions that could also be used outside the context of the aggregate. (In practice, it's often helpful for performance reasons to create specialized transition functions that can only work when called as part of an aggregate.)

Thus, in addition to the argument and result data types seen by a user of the aggregate, there is an internal state-value data type that might be different from both the argument and result types.

If we define an aggregate that does not use a final function, we have an aggregate that computes a running function of the column values from each row. sum is an example of this kind of aggregate. sum starts at zero and always adds the current row's value to its running total. For example, if we want to make a sum aggregate to work on a data type for complex numbers, we only need the addition function for that data type. The aggregate definition would be:

CREATE AGGREGATE sum (complex) ( sfunc = complex_add, stype = complex, initcond = '(0,0)' );

which we might use like this:

SELECT sum(a) FROM test_complex; sum ----------- (34,53.9)

(Notice that we are relying on function overloading: there is more than one aggregate named sum, but PostgreSQL can figure out which kind of sum applies to a column of type complex.)

The above definition of sum will return zero (the initial state value) if there are no nonnull input values. Perhaps we want to return null in that case instead — the SQL standard expects sum to behave that way. We can do this simply by omitting the initcond phrase, so that the initial state value is null. Ordinarily this would mean that the sfunc would need to check for a null state-value input. But for sum and some other simple aggregates like max and min, it is sufficient to insert the first nonnull input value into the state variable and then start applying the transition function at the second nonnull input value. PostgreSQL will do that automatically if the initial state value is null and the transition function is marked "strict" (i.e., not to be called for null inputs).

Another bit of default behavior for a "strict" transition function is that the previous state value is retained unchanged whenever a null input value is encountered. Thus, null values are ignored. If you need some other behavior for null inputs, do not declare your transition function as strict; instead code it to test for null inputs and do whatever is needed.

avg (average) is a more complex example of an aggregate. It requires two pieces of running state: the sum of the inputs and the count of the number of inputs. The final result is obtained by dividing these quantities. Average is typically implemented by using an array as the state value. For example, the built-in implementation of avg(float8) looks like:

CREATE AGGREGATE avg (float8) ( sfunc = float8_accum, stype = float8[], finalfunc = float8_avg, initcond = '{0,0,0}' );

Note: float8_accum requires a three-element array, not just two elements, because it accumulates the sum of squares as well as the sum and count of the inputs. This is so that it can be used for some other aggregates as well as avg.

Aggregate function calls in SQL allow DISTINCT and ORDER BY options that control which rows are fed to the aggregate's transition function and in what order. These options are implemented behind the scenes and are not the concern of the aggregate's support functions.

For further details see the CREATE AGGREGATE command.

35.10.1. Moving-Aggregate Mode

Aggregate functions can optionally support moving-aggregate mode, which allows substantially faster execution of aggregate functions within windows with moving frame starting points. (See Section 3.5 and Section 4.2.8 for information about use of aggregate functions as window functions.) The basic idea is that in addition to a normal "forward" transition function, the aggregate provides an inverse transition function, which allows rows to be removed from the aggregate's running state value when they exit the window frame. For example a sum aggregate, which uses addition as the forward transition function, would use subtraction as the inverse transition function. Without an inverse transition function, the window function mechanism must recalculate the aggregate from scratch each time the frame starting point moves, resulting in run time proportional to the number of input rows times the average frame length. With an inverse transition function, the run time is only proportional to the number of input rows.